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Abstract—Text classification poses some specific challenges can provide a far better result than conventional classifier

such as high dimensionality with each document (data point) that are designed for good performance for binary or multi-
having only a very small subset of them and representing class data sets.

multiple labels at the same time. In this paper, we propose . L
SISC (Semi-supervised Impurity based Subspace Clustering) In practice, very limited amount of labeled data may
a k-nearest neighbor approach, based on semi-superviéed be available for training the classifiers. If the method is

subspace clustering that considers all these factors during text unsupervised, it does not take into account this labeling
cI_assifiqation.SISC finds C|l.JSterS in the s_,ubspacgs of the high information which may prove valuable in enhancing the
dimensional text data. This novel semi-supervised subspace reg it On the other hand, if the method is totally supedjise
clustering algorithm is based on fuzzy cluster membership. This . . . .
fuzzy clustering exploits chi square statistic of the dimensions then th.e unlabeled data is considered useless. Only in semi-
and impurity measure within the cluster. Empirical evaluation supervised approaches, both labeled and unlabeled data
on real world multi-class and multi-label data set reveals that  contribute in training.
our approach outperforms state-of-the-art text classification as But there are very few text classification approaches
well as subspace clustering algorithms. that are semi-supervised [10]. There are text classificatio
approaches that consider its high dimensionality, some con
sider its multi-labelity and some try to train using a semi-
Text classification is different from conventional classifi supervised approach. But considering all of them together
cation approaches in two important aspects. The first one is rare. And solving all of these problems simultaneously,
in the construction of text documents. The dimensionalitynot just one of them, is the goal of this paper. Because, a
for text data is very large in comparison to other forms ofsystem that does not consider one of these aspects will fail
data sets. Also each document may contain only a few ofo provide the user with satisfactory results in practioa:. F
the features from the entire pool of feature set. The effecexample K Means Entropybased method [8] uses subspace
of this characteristic is that, distance measures based arustering method that is based on entropy of the dimensions
TFIDF and euclidean distance usually do not perform welllf the data is multi-label, then their entropy calculation n
in the classification process [8]. The second differencenfro longer holds ground. Similarly, methods that are supedvise
conventional classification is the presence of multiplelab depend heavily on the amount of labeled data and smaller
associated with each document. This is due to the fact thatamount of labeled data may hinder the generation of high
single document may cover multiple classes simultaneouslhguality classifiers.
One approach may be to consider all class combinations In this paper, we propose a new subspace clustering
and then run individual classification for each of them.technique that is in the later stage usedinearest neighbor
But, considering all such combinations of classes preserdpproach for classification of multi-label text data. The-no
in such a multi-label dataset will make the classificationelty in this subspace clustering approach is the applioatio
infeasible [11], [13]. of Impurity component in measuring the cluster dispersions
The notion of subspace clustering matches that of texéis well as the chi square statistic value for the dimensions.
data, i.e. having large dimensionality and possibility afle  Using these two measures in our subspace clustering make
class to correspond to only a subset of features from thé into a supervised approach as opposed to the legacy
entire feature set. Subspace clustering allows us to fire clu clustering approaches which are unsupervised. In order to
ters in a weighted hyperspace [6] and can aid us in findingise the unlabeled data in our training process, we performed
documents that form clusters in only a subset of dimensionsa simple modification to our subspace clustering approach
Each dimension of a subspace cluster contributes diffigrent to make it a semi-supervised method.
in forming those clusters. So, applying subspace clugierin  After performing the subspace clustering, we move to
can, to a large degree, divide the documents into clustats thour x-NN approach where the neighbors of a test point
correspond to individual or a particular set of labels. If we(i.e. document) are the subspace cluster centroids trained
use these clustering information in our text classificatise  on the training set. Based on these neighbors, the test point
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is assigned a set of labels. These predicted labels of thia an effort to use both of them in training. In [3], Bilenko
test point are also ranked according to their probabilityet al. propose a semi-supervised clustering algorithm de-
of being present in the neighbors. We have applied otherived fromK-Means MPCK-MEANS that incorporates both
subspace clustering approaches for classification and oumetric learning and the use of pairwise constraints in a
method provides significantly better results compared tgrincipled manner. There have also been attempts to find a
them. low-dimensional subspace shared among multiple labels [8]
The contribution of this paper is three fold. First, we pro-In [18], Yu et al. introduce a supervisddatent Semantic
vide a semi-supervised subspace clustering algorithreatall Indexing (LSI)method calledMulti-label informed Latent
SISC (Semi-supervised Impurity based Subspace Clusterin§emantic Indexing (MLSIMMLSI maps the input features
that performs well in practice even when a very limitedinto a new feature space that retains the information of
amount of labeled training data is available. Second, oupriginal inputs and meanwhile captures the dependency of
subspace clustering algorithm successfully finds clusters output dimensions. Our method is different from this algo-
the subspace of dimensions even when the data is multrithm as our approach tries to find clusters in the subspace.
label. To the best of our knowledge, this is the first atteraptt Due to the high dimensionality of feature space in text
classify multi-labeled documents using subspace cluggeri documents, considering a subset of weighted features for
Third, at the same time, this algorithm minimizes the effecta class is more meaningful than combining the features
of high dimensionality on the training. Finally, we compareto map them to lower dimensions [8]. In [4] a method
SISCwith other approaches to show the effectiveness of oucalled LPI is proposed.LPI is different from LSI which
algorithm over a number of data sets including data sets thatims to discover the global Euclidean structure whetdls
are multi-labeled. aims to discover the local geometrical structure. B
The organization of the paper is as follows: Section Illonly handles multi-class data, not multi-label data. In][12
discusses related works. Section Il presents the theafeti must-links and cannot-links, based on the labeled data, are
background of our basic subspace clustering approach imcorporated in clustering. But, if the data is multi-label
supervised form. Section IV discusses the semi-superviseithen the calculation of must-link and cannot-link becomes
formulation of SISC Section V, then provides the modifi- infeasible as there are large number of class combinations
cation of our subspace clustering approach to handle mul&nd the number of documents in each of these combinations
labeled data. Section VI discusses the data sets, expgemenmay be very low. As a result, this framework can not perform
setup and evaluation of our approach. Finally, Section Vliwell when using multi-label text data.
concludes with directions to future work. There has been some subspace clustering approaches to
minimize the impact of high dimensionality on classificatio
Subspace clustering can be divided into hard and soft
Classifying text data has been an active area of researcdubspace clustering. In case of hard subspace clustering,
for a long time. Some of these research focus on soman exact subset of dimensions are discovered whereas soft
specific properties of text data. One such property is itsubspace clustering determines the subsets of dimensions
multi-labelity. Multi-label classification studies thegimlem  according to the contributions of the dimensions in discov-
in which a data instance can have multiple labels. Ap-ering corresponding clusters. Examples of hard subspace
proaches that have been proposed to address multi-labelustering includeCLIQUE [2], PROCLUY1], ENCLUSI[5]
text classification, including margin-based methods,cstru andMAFIA [7]. A hierarchical subspace clustering approach
tural SVMs [14], parametric mixture models [16};nearest with automatic relevant dimension selection, call¢dRP,
neighbors £-NN) [19], and ensemble pruned methods [11]. was presented by Yip et al. [L7THARP is based on the
One of the most recent works inclué®Andom k-labELsets assumption that two objects are likely to belong to the
(RAKEL) [15]. In a nutshell, it constructs an ensemble of same cluster if they are very similar to each other along
LP classifiers and each LP is trained using a different smalinany dimensions. But, in multi-label and high dimensional
random subset of the multi-label set. Then, ensemble context environment, the accuracy 6fARP may drop as the
bination is achieved by thresholding the average zero-onbasic assumption becomes less valid. In [9], a subspace
decisions of each model per considered labMgtalabeler clustering method calledClusteris proposed. But, it has
is another approach which tries to predict the number ofimilar problems when dealing with multi-label data.
labels using SVM as the underlying classifier. Most of these Our algorithm uses subspace clusterinng andearest
methods utilize the relationship between multiple labels f neighbor approach. In this light, our work is more closely
collective inference. One characteristic of these modgls irelated with the work of Masud et al. [10]. In [10], a semi-
they are mostly supervised [11], [13], [15]. supervised clustering approach call8thSClustelis used.
Semi-supervised methods for classification is also presernthis algorithm is specifically designed to handle evolving
in the literature. This approach stems from the possihifty data streams. Although our multi-label text classification
having both labeled and unlabeled data in the data set artdsk is different in this perspective, we have used and
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Figure 1. SISC Top Level Diagram

extended the cluster impurity measure use@®mSCluster weights are summed up rather than using a threshold value
Also, SmSClusteis not designed to handle multi-labeled or to decide which point is regarded as a member of the cluster.
high dimensional text data. Another closely related work toWe employ this approach so that membership weights can

ours is the work of Jing et at. [8] and Frigui et at. [6]. pl@j %Sﬁleﬁ?ﬁd%ﬁmﬁrf%@ﬁéﬁ?{m ngli@s?r%li@ﬁ%or

The closeness is due the fuzzy and subspace clustering giers are identified for each test point whereis a
framework. But none of these works can perform better thafyse; defined parameter. The distance is calculated in the

our algorithm when the data is high dimensional and multi-g\hshace where the cluster residess Iis greater than 1,
labeled text data. The main reason behind this is our use Oft"ﬁen during the class probability calculation, we multiply

novel subspace clustering algorithm that finds clustersént o ojass representation with the inverse of the distande an

high dimensional space and the fuzzy cluster membershig,a;y sum them for each class across alltmearest clusters.
that allows multiple labels to be effectively associatethwi

a test document.

IIl. I MPURITY BASED SUBSPACECLUSTERING B. Subspace Clustering

A. Top Level Description We propose the following objective function to be used

The semi-supervised clustering is based on thd" OUr subspace clustering process by including the chi
Expectation-Maximization(E-M) algorithm that locally Sduare sta}tlstlc in our objec.tlve' functlon. This component
minimizes an objective function. We use fuzzy clustering,h@s been included in the objective function so that we can
allowing each data point to belong to multiple C|usters_5|mgltgneously minimize the within clustgr dlsper5|on and
Since, in case of high dimensional text data, clusterdnaximize the between cluster subspace distance to stienulat

can form in different subset of dimensions. We considefMore dimensions to play an active role in the clustering
the weight of a dimension in a cluster to represent the’rC€ss. Another component callgdpurity [10] has been

probability of contribution of that dimension in formingeh Ntroduced to qualify the dispersion measure for each efust
cluster. Then, we extract the summary statistics from thel NiS component helps in generating purer clusters in terms
data points of each cluster. The progress of the algorithn?f Cluster labels.

can be partitioned into the following steps as shown in The new objective function is written as follows:

Figyrg Step: In the E-Step, the dimension weights and kK [n m

the cluster membership values are updated. The subspac& (W, Z,A) =" | 3= > wl M Duj « Impi +4 Y Nixd, | ()
clustering formulation is fuzzy in nature. So, each point ca =1 L=ti=t =t

be a member of multiple clusters with different weights. where
Initially, every point, both labeled and unlabeled, is relgal

as a member of all the clusters with equal weights. All the
dipendicnspaie aiso gpntreuRnNeighisf the clusters aresubject to
updated and the summary statistics, i.e. the represemi@ftio &
each class present in the cluster, are updated for use in the Zwlj =1,1<j<n1<1<kuwy,e(0,1)
next step. During the summary calculation, the membership =1

Duij = (211 — x3)°



Z)‘” 1 1<i<m1<I<k0<) <1 D. Chi Square Statistic
i=1 We define chi square component similar to conventional

In this objective function, the parametércontrols the definition for our problem,
fuzziness of the membership of each data paipfurther 9 n(ad — be)?
qualifies the weight of each dimension of each clustgr Xii = (a+c)(b+d)(a+b)(c+d)
and finally,~ controls the strength of the incentive given to
the chi square component and dimension weights.

where

a = number of times feature i occurs in cluster |

b = number of times feature i occurs in all clesters except |

C. Impurity Measure ¢ = number of times cluster | occurs without feature i

In the Objective function in Eqn ﬂmpz is defined as d = number of times all clusters except | occur without feature i

n = number of dimensions

Imp, = ADC) « Ent, Since we are using fuzzy cluster membership, a point can be
member of multiple clusters. Therefore, if we try to caltela
Here, ADC) indicates theAggregated Dissimilarity Count «, b, ¢, d andn then, we have to use a threshold to determine
of cluster I and Ent; denotes the entropy of clustér  Which point can be regarded as a member of a cluster. This
: : not only brings forth another parameter, the membership
In order to understanddDC;, we first need to define yalues are undermined in the calculation. So, we modify the
Dissimilarity count[10], DC)(z, y): calculation of these counts by considering the correspmndi
membership values of each point. So, we get,

a:ZZwlj, bzl—ZZwlj

DCi(z,y) = |Li| — [Li(c)]

if = is labeled and its labe} = ¢, otherwise its value is j=1i€; j=1i€j
0. ThenADC; becomes “ -
! c:ZZwU, d:l—ZZwU
J=1ig; j=1ligj

ADC, =Y DCi(,y)

xEL,

n = total number of labeled points
where L, indicates the set of labeled points in cluster

. i f h individual poi h f hi
I. The Entropy of a clustef is computed as #nf, — Since, for each individual point, the sum of membership

c o ) L : o values for different clusters if, the value ofn is always
Doemr (P * log(pc)}%g)?’\'herepc is the prior probability of the total number of labeled training points. The chi square

H I
classc, i.e.,p. = ST . . o component allows more features to be used during the
We can show thatl D is proportional to thegini index  clustering process thereby minimizing the effect of highl an
of clusterl, Gini;: sparse dimensionality of the data.
c E. Update Equations
ADCy =Y (|Li(e))(|La| = [La(e)]) Minimization of F in Eqn. 1 with the constraints forms a
=t o class of constrained nonlinear optimization problemssThi
= (L) S (L) (1 — L) o_ptimization problem can_be solved using par_tial optimiza-
e=1 tion for A, Z andW. In this method, we first fixZ and A
L2 SR and minimize the reducel with respect to/V. Second, we
= (L)1 = ;(pc) ) fix W and A and minimize the reduceld with respect taz.
= (IL1])? % Giniy Cvnd f(ijn;lly, we minimizeF with respect toA after fixing
. . . . andZ.
This is the generalized version of calculation 4D C;. 1) Dimension Weight Update EquatiotGiven matrices

But, we are considering fuzzy membership in our subspace X 2 e .
clustering formulation. So, we have modified olPC; cal- W andZ are fixed,F is minimized if

culation. Rather than using counts, we use the membership 1
weight for the calculation. This is reflected in the probiapil i = ——= T (©)]
calculation. . Miij 32320 1,5
ph= wi *je @  where
j=1 1

q—1

where, j. is 1 if data pointj is a member of class,

0 otherwise. Thislmpurity Measureis normalized using
the global impurity measure, i.e. the impurity measure of
the whole data set, before using in the subspace clustering order to get the above equation, first, we use the
formulation. Lagrangian Multiplier technique to obtain the following

n
My;; = Z wlij”j * I'mpy + ’YXlzi
j=1



unconstrained minimization problem:

minFy ({ M}, {01}) = Z Z wlfj)\?iDlij « Imp;
=1 j=1i=1
k. m
DD MG - Z 3 Z i —1) (4)
=1 1=1 = i=
where [y, ...

minimization problems:

n m
manu /\lu 51 Z Z wlfj)\?iDlij * Impl

j=11:=1
> Mo = -1 ()
i= i=1

for I = 1,..., k. By setting the gradient of7; with respect
to \;; andd; to zero, we obtain

O0F =
a5, (Z Al — 1) (6)

i=1

=0 (7
and
OF - - -
LU wlqukl(f 1)Dlij * Imp; + ’Yq)\l(f 1)Xl2t —
O =
(8
-0 9
From Eqgn. 9, we obtain
1
6(‘1*1)
Air = (10)

[0 {325 wfy Duiy + Iy + 93, }] @

Substituting Eqn. 10 in Eqgn. 7, we have

m

Z/\l 5T z ! =
[Q{Z] 1w{]Dlzj*Impl+7Xlt}] @0
(11)

It follows that

- ! (12)

m 1
i=1

( = )
q—1
6l

{Q{ n 1wlf]D17J*1mPl+'YXl H(z;+1)

Substituting this expression back into Egn. 10, we get

where

1
n

Myi; = Z ’wi’;Dlij * I'mpy + ’)’Xl%‘
j=1

2) Cluster Membership Update Equatio&imilar to the

dimension update equation, we can derive the update equa-

tions for cluster membership matrix i.&/, givenZ and A

,0x] is a vector containing the Lagrange Mul- are fixed. The update equations are as follows:
tipliers corresponding to the constraints. The optimati
problem in Eqn. 4 can be decomposed iktindependent

1
Wy = 1 (13)
Nigj 21:1 Ny

where

1
m =1
Nyjj = {Z /\?iDlij}

i=1

In order to derive the above equation, similar to the dimen-

sion update formulation, we use thagrangian Multiplier

technique to obtain an unconstrained minimization problem

and by setting the gradient df;; with respect tow;; and
0; to zero, we obtain

k
= = 1]l =0 14
861 <l§1 wlj > ( )
and
OFy, -1
o Z Fwld TUNL Dy Tmpy — 8, = 0 (15)

From Eqgn. 15, we obtain

1
(F—=1)
_ 61
Wiy = 1 (16)
[ X D+ Impy ] 7= D

From here, we can derive

1
k 1
Niij 21— Niij

wy; =

where

1
m -1
Nyjj = {Z /\?iDlij}

i=1

3) Cluster Centroid Update Equationthe cluster center

update formulation is similar to the formulation of dimen-
sion and membership update equations. We can derive the

update equations for cluster center matrix iZe.given W
and A are fixed. The update equation is as follows:

n I
i Wi Tij

7
21wy

Rl =

an



IV. SEMI-SUPERVISEDIMPURITY BASED SUBSPACE
CLUSTERING FOR MULTI CLASS DATA ADC; = 3 (DCy(w,y) + DC(x,y)
x€eLl;

C
_ . . . . o =D _((Li(e)DULil = [La(e)]) + (ILo(HNLe] = [La()D)
Multiplying the impurity with the dispersion in the ob- ; 1 : 1 He : He

jective function in Egn. 1 makes the classification fully & l l l
supervised. If there is unlabeled data present, then we can = (ILa))* > (@) (1 = pl) + () (1 = pi)))
consider them by adding a dispersion component in the =t o o
obj:ect?ve func@ion without the impurity factor. The new = (L€ =S )2 =Y (1 -ph)?)
objective function, therefore, becomes =1 =1
= (|Li))? * Giniy
k n o m h , . £ all cl dG - h
F(W,Z,A\) = wi AL Dy % (1+ Imp, where,c¢’ consists of all classes excepand Gini; is the
( ) ;;; s ( ) gini indexfor multi-labeled data.
E m We can then use thid DC; in our calculation ofmpurity.
+Z )‘?'XlQi (18) It is apparent that, all the update equations remain the
=1 i1 ‘ same, only the calculation dimpurity differs. We apply

. . . ~ the previous formulation of fuzzy probability calculation
As a result of this change, the dimension update equationn Eqn. 2 in this case too, in order to use the multi-label
i.e. Egn. 19 also changes. The new dimension weight updaignpurity measure in our model.

equation is as follows:
VI. EXPERIMENTS AND RESULTS

A = 1 (19) We have performed extensive experiments to find out the
Mui; 3720 5 performance of our method in both multi-class and multi-
label environment. In the next part, we will describe theadat
sets used in the experiments and also the base line methods
against which we have compared our results.

where

[ A. Data Sets

n
My = szijlij (14 Impy) + X7, We have used a number of datasets in our experimenta-
j=1 tion. In this paper, due to space constraints, we have reghort
ronly 4 of those data sets. Two of these datasets are multi-
Sass datasets and the other two are multi-label datasets. |
all cases, we used fifty percent data as training and rest as
test data in our experiments as part of 2-fold cross-vatidat
Similar to other text classification approaches, we peréam
preprocessing the data and removed stop words from the
V. SEMI-SUPERVISEDIMPURITY BASED SUBSPACE data. We used binary features as dimensions, i.e. features
CLUSTERING FOR MULT!I LABELED DATA can only have0 or 1 values. The parametey is set to
0.5. For convenience, we selected 1000 features based on
information gain and used them in our experiments. In all the
] ] . ) . experiments, the same feature set was used. We performed
If the data is multi-labeled, the impurity measure in the yytiple runs on our data sets with the training set chosen

previous section is not correct. As the classes may overlapandom|y from the data set. The four data sets used are as
the probability calculation becomes incorrect, i.e., thens  fg)1ows:

of pr_obabllljues may becom_e gr_eater than 1._We, therefpre, 1) Reuters Data Set: This is part of the Reuters-21578,
modify the impurity calculation in the generalized case. (. Distribution 1.0. We selected 10,000 data points from

not fuzzy) as follows: the 21,578 data points of this data set and henceforth,

The other update equations remain same as they a
independent of thémpurity component.

The Entropy of a clustel is computed as Ent; = this part of the data set will be referred to as simply
Zle(—plc * log(pl) — (1 — pL) * log(1 — pL)), wherep!, Reuters Data Set. We considered the most frequently
is the prior probability of class, i.e., p! = ‘L‘ZL—"’ occurring 20 classes in our experiments. Of the 10,000

¢ 1 ; . .
We modify ADC; and we can show thattDC; is data points, 6651 are multi-labeled. This data set,

therefore, allows us to determine the performance of

roportional to the multi labegjini indexof cluster!: ; .
prop e our multi-label formulation.
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Figure 2. (a) ROC Curves For NSF Abstracts Data Set. (b) RO@ea3u-or 20 Newsgroups Data Set Without Multi-Labels.
Methods NSF | 20 Newsgroups label classification approaches. All the comparisons ane do
_ Abstracts| w/o multi-label based on ROC curves i.e. the area under the curve. This area
K Means 0.869 0.661 : )
1) Basic xk-NN Approach and K Means Clusteringn
k-NN 0.602 0.666 . . .
this part, we compare our approach with the basibIN
SCAD2 0.56 0.661 o
approach anK Means Clusteringin x-NN approach, all
K Means Entropy| 0.58 0.68 - . o
the training data points are saved and based on user specified
Table |

parameters, we find the nearest neighboring data points

of a test instance and based on their labels, we decide on the

classification of that test instance. In tieMeans Clustering

approach, the data points are divided into different chgste

2) 20 Newsgroups Data Set: This data set is also muliN Order to usek Means Clusterindor classification, after
performing the clustering, we find the nearest clusters

label in nature. We selected 15,000 thousand docuémd based on the distribution of labels in those clusters, we
ments randomly for our classification experiments. Of !

them 2822 are multi-label documents and the rest ar%redid the labels for a test instance. A similar method has
single labeled. We have performed our classification een applied in [10], however, we are not dealing with data

. streams in this case. So, we train a single classifier model

3) RSP A0S 133585 SLNEAR SEmulti-class dataand perform the test with that model as opposed to training
set. Each document or abstract is associated with gultiple models on different data chunks in an ensemble
single area of research. The classes indicate the area ffshion [10]. We use this approach as baseline because of
research. The total number of documents is 1,34,158&he high dimensionality of text data. If only single points
From them, 10,000 documents are randomly selectedre used for nearest neighbors, the features present in them
to represent the top 10 classes in the data set. We hav@ay not provide us with correct classification information.

4y YRR JrARE DR BAWRKBE RAMNELabels: we There may also be cases where there are no appropriate

have removed the multi-label documents from then€arest neighbors because few features coincide in bdth tes

previously mentioned data set to create this multi-2nd training instance. Also, using this method as baseline
class data set. The number of labels considered idllows us to show the effectiveness of introducing subspace

the same as the multi-label data set,i.e. 20 classe§/Ustering in our approach.
In this case, we selected 12,000 documents randomly 2) Subspace Clustering Method#ntroducing subspace
and used them in our experiments. clustering is not enough to perform good classification & th
text data. We have to consider the high dimensionality and
label information in our subspace clustering formulatibn.
We have 3 parts in our experiments. In the first phasethis section, we show how our subspace clustering approach
we show comparison with basic K means clustering and performs better in text classification than some state of the
nearest neighbo¢NN) approach. In the second phase, weart subspace clustering algorithms. We provide comparison
show the comparison between different subspace clusteringith SCAD2[6] and K Means Entrop)y[8] based approach
approach and our method. Finally, we show the performancehich indicates the significantly better classificationfper
of our proposed approach in comparison with two multi-mance of our approach. The reason for choosf@AD?2

AREA UNDER THE ROC QURVE COMPARISON CHART FOR
MULTI-CLASS CLASSIFICATION

B. Base Line Approaches
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Methods Reuters| 20 Newsgroups set consists of a single multi-class classifier that leanes t
SISC multi-Label| 0.78 0.82 number of labels associated with each data point. In [13],
Pruned Set 0.55 0.58 the authors provide three strategies for training thissifies

MetaLabeler 0.564 0.578 using SVM. We used the approach that produces the best
K Means 0.539 0.642 results as claimed by the authors, i.e. using the feature set
k-NN 0.577 0.698 used in the first set of classifiers but the labels are the
SCAD2 0.742 0.642 number of labels in the multi-label data points. Based on
K Means Entropy| 0.542 0.638 the predictions of this classifier, we choose the labels that
Table II have the maximum values in predictions found through the
AREA UNDER THE ROC QURVE COMPARISON CHART FOR first set of classifiers mentioned above.

MULTI-LABEL CLASSIFICATION
C. Discussion
In Figure 2(a), we compare the semi-supervised multi-

is because of its close resemblance to our algorithm, telass variation ofSISCformulated in Section IV with base
show the effect of introducing impurity measure and chiline approaches for th&lSF Abstracts Data SefAs can
square component in the subspace clustering formulation arbe seen from the figure, our method provides significantly
because, like oursSCAD2is also fuzzy in nature. better result than other methods. Since, this data set is not

3) Multi-Label Classification:To show the feasibility of multi-label, we do not show the performanceRruned Set
the multi-label variation of our algorithm, we compare it and MetalLabelermethods on this data set. Our algorithm
with two multi-label classification algorithms, theruned  achieves an AUC (Area Under The Curve) valueOdi44
Set algorithm [8] and MetalLabeler [13]. In both cases, whereas the closest any other method can achiees@s.
we usedSVM as the underlying classifier as used in their In Figure 2(b), we perform the same comparison, but for
algorithm. Only the multi-label data sets mentioned abovehe 20 Newsgroups Data Set Without Multi-Labedss can
were used for this part of the experiments. be seen from the figure, in this case too, our method provides

In the Pruned Se{l11] method, based on a user specified significantly better result than other methods. Our alganit
parameter, all data points with label combinations havingachieves an AUC (Area Under The Curve) value(of4
sufficient count are added to an empty training set. Thisvhereas the closest any other method can achietes
training set is then augmented with rejected data points In Table I, we present the summary of our results in terms
having label combinations that are not sufficiently frequen of AUC values with a range fror to 1.
This is done by making multiple copies of the data points, In Figure 3(a) and Figure 3(b), we show the performance
only this time with subsets of the original label set. So,of the multi-label variation of our algorithm. We have added
some data points may be duplicated during this training sethe Pruned Seaind MetalLabelermethod in our comparison
generation process. This training set is then used to creats they are state-of-the-art multi-label algorithms. Also
an ensemble oBVM classifiers. We have also varied the these two graphs represent the experimental results on
number of retained label subsets to add to the training sdReuters and 20 Newsgroups Data Sets respectively, both
and chose the best result to report. of which are multi-label data sets. These two figures are

In case ofMetalabeler[13], there are two sets of classi- followed by Table II, which summarizes our multi-label
fiers. One set consists of binary classifiers that correspmnd experiment results. For Reuters data set, our algorithm
each of the unique labels present in the data set. The othachieves AUC value 0f.78 and the nearest value (5742.
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Figure 4. ROC Curves For Different Percentage Of Labelech@a} NSF Abstracts Data Set. (b) 20 Newsgroups Data Set Witkalti-Labels (c)
Reuters Data Set (d) 20 Newsgroups Data Set

ataSets 10% Labeled| 25% Labeled| 50% Labeled| 75% Labeled| 100% Labeled
Data Data Data Data Data
NSF Abstracts 0.894 0.891 0.911 0.944 0.944
20 Newsgroups w/o Multi-Labe 0.853 0.826 0.847 0.856 0.82
Reuters 0.763 0.737 0.755 0.802 0.78
20 Newsgroups 0.82 0.871 0.835 0.865 0.82
Table Il

AREA UNDER THE ROC QURVE COMPARISON CHART FOR DIFFERENTPERCENTAGEOF LABELED DATA

And, for 20 Newsgroups data set, our algorithm achieveshis new algorithm. In future, we would like to incorporate
AUC value 0f0.82 whereas, the nearest value(i$9s. label propagation in our classification approach for better
classification model as well as train not only one but mutipl
classifiers in an ensemble model. We would also like to

We have varied the amount of labeled data in our dataxtend our algorithm to classify streaming text data.
sets to find out how this aspect impacts the performance

D. Performance On Limited Labeled Data

of our algorithm. As can be seen from Figure 4, even REFERENCES
with significant change in the amount of labeled data, the [1] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S.
performance of our algorithm is quite satisfactory. In cake Park. Fast algorithms for projected clusteriSg§GMOD Rec,.

Reuters and 20 Newsgroups Data Set, we use the multi-label  28(2):61-72, 1999.
variation of SISCand for the other two multi-class data sets,

we use the multi-class variation &SC The AUC values  [2l R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
are summarized in Table III. Automatic subspace clustering of high dimensional data for

data mining applicationsSIGMOD Re¢.27(2):94-105, 1998.

VII. CoNcLUSIONS [3] M. Bilenko, S. Basu, and R. J. Mooney. Integrating con-

In this paper, we have present&ISC a new semi- straints and metric learning in semi-supervised clustering. In
supervised text classification algorithm based on fuzzy sub ~ In ICML, pages 81-88, 2004.

space clustering approach. Our proposed subspace clustey-

'np algorithm '3en51?es clusters pn tphe subs acpe for hi h[ D. Cai, X. He, and J. Han. Document clustering using locality

: .g g. ! ! I u ! ubsp '9 preserving indexingknowledge and Data Engineering, IEEE

dimensional sparse data and and we then use them for  Transactions on17(12):1624-1637, Dec. 2005.

classification using:-NN approach. Also, our formulation

of this fuzzy clustering allows us to handle multi-labeled [5] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based

text dataSISG being semi-supervised, uses both labeled and ysgugbs‘;?gfeglfﬁg";? tfr?é rfnfltrr]lm,gcrltlll"gelgﬁalljgatniérr'Ignal
N . . | I | |

unlabeled. Qata durlng.clustermg process and as can bg Seen  _terence on Knowle dge discovery and data minpages

from empirical evalua'uo_n, per_forms well even yvhen limited 84-93, New York, NY, USA. 1999. ACM.

amount of labeled data is available. The experimental tesul

on real world multi-class and multi-labeled data sets have[6] H. Frigui and O. Nasraoui. Unsupervised learning of proto-

shown thatSISC outperformsx-NN, K Means Clustering types and attribute weight®attern Recognition37(3):567 —
K Means Entropybased methodSCAD2and state-of-the- 981, 2004.
art multi-label text classification approaches IReuned Set

X o ~[7] S. Goil, H. Nagesh, and A. Choudhary. Mafia: Efficient and
and MetaLabelerin classifying text data. There are still scalable subspace clustering for very large data $ethnical

scopes for improvement as well as possibility of extending Report CPDC-TR-9906-010, Northwest Unil999.



(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

L. Jing, M. K. Ng, and J. Z. Huang. An entropy weighting k-
means algorithm for subspace clustering of high-dimensional
sparse data.lEEE Trans. Knowl. Data Eng.19(8):1026—
1041, 2007.

G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace
clustering with flexible dimension partitioning. IData
Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference onpages 1250-1254, April 2007.

M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. A
practical approach to classify evolving data streams: Training
with limited amount of labeled data. IBata Mining, 2008.
ICDM ’08. Eighth IEEE International Conference ppages
929-934, Dec. 2008.

J. Read, B. Pfahringer, and G. Holmes. Multi-label classifica-
tion using ensembles of pruned sets.Oata Mining, 2008.
ICDM '08. Eighth IEEE International Conference ppages
995-1000, Dec. 2008.

J. Struyf and S. Beroski. Clustering trees with instance
level constraints. INECML '07: Proceedings of the 18th

European conference on Machine Learnipgges 359-370,

Berlin, Heidelberg, 2007. Springer-Verlag.

L. Tang, S. Rajan, and V. K. Narayanan. Large scale multi-
label classification via metalabeler.\MWW '09: Proceedings

of the 18th international conference on World wide wedges
211-220, New York, NY, USA, 2009. ACM.

|. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
Support vector machine learning for interdependent and struc-
tured output spaces. ICML '04: Proceedings of the twenty-
first international conference on Machine learnjmage 104,
New York, NY, USA, 2004. ACM.

G. Tsoumakas and |. Vlahavas. Random k-labelsets: An
ensemble method for multilabel classification.HEML '07:
Proceedings of the 18th European conference on Machine
Learning pages 406—417, Berlin, Heidelberg, 2007. Springer-
Verlag.

N. Ueda and K. Saito. Parametric mixture models for multi-
labeled text.In Advances in Neural Information Processing
Systems 15. Cambridge: MIT Pres8003.

K. Yip, D. Cheung, and M. Ng. Harp: a practical projected
clustering algorithmKnowledge and Data Engineering, IEEE
Transactions on16(11):1387-1397, Nov. 2004.

K. Yu, S. Yu, and V. Tresp. Multi-label informed latent
semantic indexing. IrSIGIR ’'05: Proceedings of the 28th
annual international ACM SIGIR conference on Research and
development in information retrievapages 258-265, New
York, NY, USA, 2005. ACM.

M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learn-
ing approach to multi-label learningPattern Recognition
40(7):2038 — 2048, 2007.



